
U n i v e r s i t y o f C a l i f o r n i a L a w r e n c e L i v e r m o r e N a t i o n a l L a b o r a t o r y

Scientific Interface Definition Language
(SIDL) that addresses the unique needs
of parallel scientific computing. SIDL
supports complex numbers and
dynamic multidimensional arrays as
well as parallel communication direc-
tives that are required for parallel
distributed components. As shown in
Figure 2, Babel uses this SIDL interface
description to generate glue code that
allows a software library implemented
in one supported language to be called
seamlessly from any other supported
language. Babel’s capability to freely
mix languages allows libraries to be
written in any supported language and
called by any other supported lan-
guage. For example, an application
written in Python could call a solver
library written in C, physics packages
written in Fortran or C++, and a visual-
ization package written in Java.

Babel currently supports Fortran 77,
C, C++, Python, and Java. We plan to
add support for Fortran 90 in the near
future. We are also researching exten-
sions to SIDL that would add semantic
descriptions for the behavior of scien-
tific components.

Another important achievement has
been the development of Alexandria, a
prototype web-based repository, to

UCRL-TB-145880 URL: http://www.llnl.gov/CASC/component

cept of a ”parallel component” that is
required for high-performance scien-
tific computing.

Scope of Project
We are investigating and developing

component technology in three pri-
mary areas. First, we have developed a
software tool called Babel that enables
language interoperability among a vari-
ety of scientific programming
languages, including Fortran, C, C++,
Java, and Python. Second, we have
developed a web-based component
repository called Alexandria for
deploying software components.
Finally, we are investigating parallel
data redistribution issues for communi-
cation among distributed components
running on differing numbers of paral-
lel processors.

Our Babel tool addresses language
interoperability issues for high-perfor-
mance parallel scientific software. Its
purpose is to enable the creation,
description, and distribution of lan-
guage independent software libraries.
Babel uses Interface Definition
Language (IDL) techniques. An IDL
describes the calling interface (but not
the implementation) of a particular
software library. We have designed a

High-
Performance
Component
Technology
Mission
We are developing software compo-
nent technology for high-performance
scientific computing to address prob-
lems of complexity, re-use, and
interoperability for laboratory simula-
tion software. Our research at the
Center for Applied Scientific
Computing (CASC) at the Lawrence
Livermore National Laboratory (LLNL)
focuses on the unique requirements of
scientific computing on parallel
machines, such as fast in-process con-
nections among components, language
interoperability for scientific languages,
and data distribution support for mas-
sively parallel components.

NN
umerical simulations play a
vital role in the DOE’s sci-
ence mission as a basic

research tool for understanding funda-
mental physical processes. As
simulations become increasingly
sophisticated and complex, no single
person—or even a single laboratory—
can develop scientific software in
isolation. Instead, physicists, chemists,
mathematicians, and computer scien-
tists concentrate on developing
software in their domain of expertise.
Computational scientists create simula-
tions by combining these individual
software pieces.

It is often difficult to share sophisti-
cated software packages among
applications due to differences in
implementation languages, program-
ming style, or calling interfaces. In the
industrial sector, this problem is solved
through the use of component technol-
ogy. Unfortunately, industry
component solutions are inappropriate
for parallel scientific computing
because they do not support the con-

Figure 1: Component applications are built from component building blocks; components can be
thought of as software “integrated circuits.”

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

High Performance Component Technology

encourage the distribution and re-use of scientific software
components and libraries. By providing a convenient web-
based delivery system, Alexandria lowers the barrier to
adopting component technology. We will work with the
DOE Common Component Architecture forum (see below) to
establish common schema for accessing Alexandria from
component tools developed by other DOE collaborators.

Finally, we are investigating parallel data redistribution
among components running on different parallel machines and
on different numbers of processors. Communication between
two applications running on differing numbers of processors
requires data redistribution. For example, a simulation code
running on thousands of processors may need to communicate
mesh data to a visualization server with a relatively small num-
ber of processors. The data redistribution for simple data types,
such as multidimensional arrays, has been addressed by others
in the past. We are investigating general techniques for the
sophisticated data structures typically found in complex scien-
tific applications, such as meshes and sparse matrices.

Common Component Architecture Forum
We are working closely with members of the Common

Component Architecture (CCA) forum (see http://www.cca-
forum.org). The CCA is a working group of physicists,
mathematicians, and computer scientists developing component
technology standards that address the high-performance com-
puting needs of the DOE. CCA members include participants
from the DOE (ANL, LANL, LBNL, LLNL, ORNL, and SNL) and
academia (Indiana University and University of Utah). The CCA
is developing a reference implementation of a component tech-
nology infrastructure for high-performance computing.

CASC component technology plays an important role in
the emerging CCA software infrastructure. Library developers
will use SIDL to describe CCA component interfaces, and our
Babel tool will provide the underlying language interoper-
ability support for CCA frameworks. Alexandria will store
CCA components, library interface descriptions in SIDL, and
other component meta-data, such as documentation. We are

also contributing to the community effort investigating vari-
ous parallel data redistribution approaches for distributed
parallel components.

Technology Demonstrations
In addition to the CCA, we are collaborating with labora-

tory research groups to demonstrate component technology
in scientific libraries and applications. These collaborations
help us understand the issues involved in using advanced
software technologies for scientific simulations, and they
demonstrate the applicability of component approaches.

In particular, we are working with the hypre Scalable
Linear Solvers team to integrate Babel language interoper-
ability technology into their solver library. Our technology
will enable the hypre library, developed using object-ori-
ented techniques in C, to be called from scientific
applications written in Fortran 77, C, C++, Java, and Python.
We are also working with members of the Advanced Laser
Plasma Simulator (ALPS) and the Structured Adaptive Mesh
Refinement Application Infrastructure (SAMRAI) projects to
use Babel technology to develop an advanced scripting
layer for the ALPS framework. This scripting layer will allow
computational scientists to more easily analyze ALPS simu-
lation results and compare against other existing
computational tools.

Contact Information

Additional information about High-Performance
Component Technology at LLNL is available from our web
site http://www.llnl.gov/CASC/component. You may also
contact the team at components@llnl.gov or Scott Kohn at
skohn@llnl.gov or 925-422-4022.

Figure 3: We are integrating component technology into ALPS to improve
interactivity and data analysis capabilities.

package HYPRE {
 interface Vector {
 void axpy (in Vector x, in double a);
 double dot(in Vector x);
 ...
 } ;
 interface Matrix {
 ...
 } ;
} ;
�

Library
Interface
in SIDL

Babel
tools

f77

C

C++

Python

Java

Figure 2: Babel provides language interoperability using SIDL interface
descriptions

